Changes in agonist neural drive, hypertrophy and pre-training strength all contribute to the individual strength gains after resistance training

74Citations
Citations of this article
284Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Purpose: Whilst neural and morphological adaptations following resistance training (RT) have been investigated extensively at a group level, relatively little is known about the contribution of specific physiological mechanisms, or pre-training strength, to the individual changes in strength following training. This study investigated the contribution of multiple underpinning neural [agonist EMG (QEMGMVT), antagonist EMG (HEMGANTAG)] and morphological variables [total quadriceps volume (QUADSVOL), and muscle fascicle pennation angle (QUADSθp)], as well as pre-training strength, to the individual changes in strength after 12 weeks of knee extensor RT. Methods: Twenty-eight healthy young men completed 12 weeks of isometric knee extensor RT (3/week). Isometric maximum voluntary torque (MVT) was assessed pre- and post-RT, as were simultaneous neural drive to the agonist (QEMGMVT) and antagonist (HEMGANTAG). In addition QUADSVOL was determined with MRI and QUADSθp with B-mode ultrasound. Results: Percentage changes (∆) in MVT were correlated to ∆QEMGMVT (r = 0.576, P = 0.001), ∆QUADSVOL (r = 0.461, P = 0.014), and pre-training MVT (r = −0.429, P = 0.023), but not ∆HEMGANTAG (r = 0.298, P = 0.123) or ∆QUADSθp (r = −0.207, P = 0.291). Multiple regression analysis revealed 59.9% of the total variance in ∆MVT after RT to be explained by ∆QEMGMVT (30.6%), ∆QUADSVOL (18.7%), and pre-training MVT (10.6%). Conclusions: Changes in agonist neural drive, quadriceps muscle volume and pre-training strength combined to explain the majority of the variance in strength changes after knee extensor RT (~60%) and adaptations in agonist neural drive were the most important single predictor during this short-term intervention.

Cite

CITATION STYLE

APA

Balshaw, T. G., Massey, G. J., Maden-Wilkinson, T. M., Morales-Artacho, A. J., McKeown, A., Appleby, C. L., & Folland, J. P. (2017). Changes in agonist neural drive, hypertrophy and pre-training strength all contribute to the individual strength gains after resistance training. European Journal of Applied Physiology, 117(4), 631–640. https://doi.org/10.1007/s00421-017-3560-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free