The budding yeast kinetochore is composed of an inner and outer protein complex, which binds to centromere (CEN) DNA and attaches to microtubules. We performed a genetic synthetic dosage lethality screen to identify novel kinetochore proteins in a collection of chromosome transmission fidelity mutants. Our screen identified several new kinetochore-related proteins including YLR381Wp/Ctf3p, which is a member of a conserved family of centromere-binding proteins. Ctf3p interacts with Mcm22p, Mcm16p, and the outer kinetochore protein Ctf19p. We used chromatin immunoprecipitation to demonstrate that Ctf3p, Mcm22p, and Mcm16p bind to CEN DNA in a Ctf19p-dependent manner. In addition, Ctf3p, Mcm22p, and Mcm16p have a localization pattern similar to other kinetochore proteins. The fission yeast Ctf3p homolog, Mis6, is required for loading of a CENP-A centromere specific histone, Cnpl, onto centromere DNA. We find however that Ctf3p is not required for loading of the budding yeast CENP-A homolog, Cse4p, onto CEN DNA. In contrast, Ctf3p and Ctf19p fail to bind properly to the centromere in a cse4-1 mutant strain. We conclude that the requirements for CENP-A loading onto centromere DNA differ in fission versus budding yeast.
CITATION STYLE
Measday, V., Hailey, D. W., Pot, I., Givan, S. A., Hyland, K. M., Cagney, G., … Hieter, P. (2002). Ctf3p, the Mis6 budding yeast homolog, interacts with Mcm22p and Mcm16p at the yeast outer kinetochore. Genes and Development, 16(1), 101–113. https://doi.org/10.1101/gad.949302
Mendeley helps you to discover research relevant for your work.