Due to the inhomogeneous distribution of donor and acceptor materials within the photoactive layer of bulk heterojunction organic solar cells (OSCs), proper selection of a conventional or an inverted device structure is crucial for effective exciton dissociation and charge transportation. Herein, we investigate the donor and acceptor distribution within the non-fullerene photoactive layer based on PBDTTT-ET:IEICO by time-of-flight secondary-ion mass spectroscopy (TOF-SIMS) and scanning Kelvin probe microscopy (SKPM), indicating that more IEICO enriches on the surface of the photoactive layer while PBDTTT-ET distributes homogeneously within the photoactive layer. To further understand the effect of the inhomogeneous component distribution on the photovoltaic performance, both conventional and inverted OSCs were fabricated. As a result, the conventional device shows a power conversion efficiency (PCE) of 8.83% which is 41% higher than that of inverted one (6.26%). Eventually, we employed nickel oxide (NiOx) instead of PEDOT:PSS as anode buffer layer to further enhance the stability and PCE of OSCs with conventional structure, and a promising PCE of 9.12% is achieved.
CITATION STYLE
Wang, Y., Shi, Z., Liu, H., Wang, F., Bai, Y., Bian, X., … Tan, Z. (2017). The effect of donor and nonfullerene acceptor inhomogeneous distribution within the photoactive layer on the performance of polymer solar cells with different device structures. Polymers, 9(11). https://doi.org/10.3390/polym9110571
Mendeley helps you to discover research relevant for your work.