Loading of cocatalysts through photodeposition has been considered as one of the most promising methods to improve the photocatalytic activities of semiconductors, because of the advantages of intimate contact, easy preparation, and site-directed loading. While extensive efforts have been made to characterize the cocatalysts after synthesis, the growth kinetics of cocatalysts during photodeposition is largely a black box, thus leading to relatively empirical optimizations on the loading strategies of cocatalysts to date. Herein, we dynamically imaged the photodeposition of single cocatalysts on semiconductors via a wide-field fluorescence (FL) microscope, utilizingg-C3N4sheets and CdS nanowires as models. This capability was based on the quenching effect of cocatalysts on the intrinsic FL emission of semiconductors. Single cocatalyst study revealed that FL emission of photocatalysts decayed monoexponentially during photodeposition, and cocatalysts possessed a self-limited growth. The significant heterogeneities (differences) of cocatalysts during photodeposition were also uncovered, regarding the apparent induction time, deposition rate and FL quenching amplitude. These informations were difficult to be accessed using theex situcharacterization. Programmable photodeposition and dissolution of CoxP were also realized, utilizing a focused laser beam with a spot size of <1 μm. This work explored the hidden details of the growth of cocatalysts during photodeposition, opening up a new avenue to optimize photodeposition for rationally designing more efficient photocatalysts.
CITATION STYLE
Su, H., & Wang, W. (2021). Dynamically Monitoring the Photodeposition of Single Cocatalyst Nanoparticles on Semiconductors via Fluorescence Imaging. Analytical Chemistry, 93(35), 11915–11919. https://doi.org/10.1021/acs.analchem.1c01908
Mendeley helps you to discover research relevant for your work.