Mantle dynamics

  • Davies G
N/ACitations
Citations of this article
30Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Geophysics is the physics of the Earth, the science that studies the Earth by measuring the physical consequences of its presence and activity. It is a science of extraordinary breadth, requiring 10 volumes of this treatise for its description. Only a treatise can present a science with the breadth of geophysics if, in addition to completeness of the subject matter, it is intended to discuss the material in great depth. Thus, while there are many books on geophysics dealing with its many subdivisions, a single book cannot give more than an introductory flavor of each topic. At the other extreme, a single book can cover one aspect of geophysics in great detail, as is done in each of the volumes of this treatise, but the treatise has the unique advantage of having been designed as an integrated series, an important feature of an interdisciplinary science such as geophysics. From the outset, the treatise was planned to cover each area of geophysics from the basics to the cutting edge so that the beginning student could learn the subject and the advanced researcher could have an up-to-date and thorough exposition of the state of the field. The planning of the contents of each volume was carried out with the active participation of the editors of all the volumes to insure that each subject area of the treatise benefited from the multitude of connections to other areas. Geophysics includes the study of the Earth’s fluid envelope and its near-space environment. However, in this treatise, the subject has been narrowed to the solid Earth. The Treatise on Geophysics discusses the atmosphere, ocean, and plasmasphere of the Earth only in connection with how these parts of the Earth affect the solid planet. While the realm of geophysics has here been narrowed to the solid Earth, it is broadened to include other planets of our solar system and the planets of other stars. Accordingly, the treatise includes a volume on the planets, although that volume deals mostly with the terrestrial planets of our own solar system. The gas and ice giant planets of the outer solar system and similar extra-solar planets are discussed in only one chapter of the treatise. Even the Treatise on Geophysics must be circumscribed to some extent. One could envision a future treatise on Planetary and Space Physics or a treatise on Atmospheric and Oceanic Physics. Geophysics is fundamentally an interdisciplinary endeavor, built on the foundations of physics, mathematics, geology, astronomy, and other disciplines. Its roots therefore go far back in history, but the science has blossomed only in the last century with the explosive increase in our ability to measure the properties of the Earth and the processes going on inside the Earth and on and above its surface. The technological advances of the last century in laboratory and field instrumentation, computing, and satellite-based remote sensing are largely responsible for the explosive growth of geophysics. In addition to the enhanced ability to make crucial measurements and collect and analyze enormous amounts of data, progress in geophysics was facilitated by the acceptance of the paradigm of plate tectonics and mantle convection in the 1960s. This new view of how the Earth works enabled an understanding of earthquakes, volcanoes, mountain building, indeed all of geology, at a fundamental level. The exploration of the planets and moons of our solar system, beginning with the Apollo missions to the Moon, has invigorated geophysics and further extended its purview beyond the Earth. Today geophysics is a vital and thriving enterprise involving many thousands of scientists throughout the world. The interdisciplinarity and global nature of geophysics identifies it as one of the great unifying endeavors of humanity. The keys to the success of an enterprise such as the Treatise on Geophysics are the editors of the individual volumes and the authors who have contributed chapters. The editors are leaders in their fields of expertise, as distinguished a group of geophysicists as could be assembled on the planet. They know well the topics that had to be covered to achieve the breadth and depth required by the treatise, and they know who were the best of their colleagues to write on each subject. The list of chapter authors is an impressive one, consisting of geophysicists who have made major contributions to their fields of study. The quality and coverage achieved by this group of editors and authors has insured that the treatise will be the definitive major reference work and textbook in geophysics. Each volume of the treatise begins with an ‘Overview’ chapter by the volume editor. The Overviews provide the editors’ perspectives of their fields, views of the past, present, and future. They also summarize the contents of their volumes and discuss important topics not addressed elsewhere in the chapters. The Overview chapters are excellent introductions to their volumes and should not be missed in the rush to read a particular chapter. The title and editors of the 10 volumes of the treatise are: Volume 1: Seismology and Structure of the Earth Barbara Romanowicz University of California, Berkeley, CA, USA Adam Dziewonski Harvard University, Cambridge, MA, USA Volume 2: Mineral Physics G. David Price University College London, UK Volume 3: Geodesy Thomas Herring Massachusetts Institute of Technology, Cambridge, MA, USA Volume 4: Earthquake Seismology Hiroo Kanamori California Institute of Technology, Pasadena, CA, USA Volume 5: Geomagnetism Masaru Kono Okayama University, Misasa, Japan Volume 6: Crust and Lithosphere Dynamics Anthony B. Watts University of Oxford, Oxford, UK Volume 7: Mantle Dynamics David Bercovici Yale University, New Haven, CT, USA Volume 8: Core Dynamics Peter Olson Johns Hopkins University, Baltimore, MD, USA Volume 9: Evolution of the Earth David Stevenson California Institute of Technology, Pasadena, CA, USA Volume 10: Planets and Moons Tilman Spohn Deutsches Zentrum fu¨ r Luft-und Raumfahrt, GER In addition, an eleventh volume of the treatise provides a comprehensive index. The Treatise on Geophysics has the advantage of a role model to emulate, the highly successful Treatise on Geochemistry. Indeed, the name Treatise on Geophysics was decided on by the editors in analogy with the geochemistry compendium. The Concise Oxford English Dictionary defines treatise as ‘‘a written work dealing formally and systematically with a subject.’’ Treatise aptly describes both the geochemistry and geophysics collections. The Treatise on Geophysics was initially promoted by Casper van Dijk (Publisher at Elsevier) who persuaded the Editor-in-Chief to take on the project. Initial meetings between the two defined the scope of the treatise and led to invitations to the editors of the individual volumes to participate. Once the editors were on board, the details of the volume contents were decided and the invitations to individual chapter authors were issued. There followed a period of hard work by the editors and authors to bring the treatise to completion. Thanks are due to a number of members of the Elsevier team, Brian Ronan (Developmental Editor), Tirza Van Daalen (Books Publisher), Zoe Kruze (Senior Development Editor), Gareth Steed (Production Project Manager), and Kate Newell (Editorial Assistant). G. Schubert Editor-in-Chief

Cite

CITATION STYLE

APA

Davies, G. F. (2006). Mantle dynamics. In Geophysics (pp. 806–819). Kluwer Academic Publishers. https://doi.org/10.1007/0-387-30752-4_98

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free