Modeling the diffusion of complex innovations as a process of opinion formation through social networks

1Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

Abstract

Complex innovations– ideas, practices, and technologies that hold uncertain benefits for potential adopters—often vary in their ability to diffuse in different communities over time. To explain why, I develop a model of innovation adoption in which agents engage in naïve (DeGroot) learning about the value of an innovation within their social networks. Using simulations on Bernoulli random graphs, I examine how adoption varies with network properties and with the distribution of initial opinions and adoption thresholds. The results show that: (i) low-density and high-asymmetry networks produce polarization in influence to adopt an innovation over time, (ii) increasing network density and asymmetry promote adoption under a variety of opinion and threshold distributions, and (iii) the optimal levels of density and asymmetry in networks depend on the distribution of thresholds: networks with high density (>0.25) and high asymmetry (>0.50) are optimal for maximizing diffusion when adoption thresholds are right-skewed (i.e., barriers to adoption are low), but networks with low density (<0.01) and low asymmetry (<0.25) are optimal when thresholds are left-skewed. I draw on data from a diffusion field experiment to predict adoption over time and compare the results to observed outcomes.

Cite

CITATION STYLE

APA

Assenova, V. A. (2018). Modeling the diffusion of complex innovations as a process of opinion formation through social networks. PLoS ONE, 13(5). https://doi.org/10.1371/journal.pone.0196699

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free