Toxicity of amorphous silica nanoparticles in mouse keratinocytes

189Citations
Citations of this article
126Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The present study was designed to examine the uptake, localization, and the cytotoxic effects of well-dispersed amorphous silica nanoparticles in mouse keratinocytes (HEL-30). Mouse keratinocytes were exposed for 24 h to various concentrations of amorphous silica nanoparticles in homogeneous suspensions of average size distribution (30, 48, 118, and 535 nm SiO2) and then assessed for uptake and biochemical changes. Results of transmission electron microscopy revealed all sizes of silica were taken up into the cells and localized into the cytoplasm. The lactate dehydrogenase (LDH) assay shows LDH leakage was dose- and size-dependent with exposure to 30 and 48 nm nanoparticles. However, no LDH leakage was observed for either 118 or 535 nm nanoparticles. The mitochondrial viability assay (MTT) showed significant toxicity for 30 and 48 nm at high concentrations (100 μg/mL) compared to the 118 and 535 nm particles. Further studies were carried out to investigate if cellular reduced GSH and mitochondria membrane potential are involved in the mechanism of SiO2 toxicity. The redox potential of cells (GSH) was reduced significantly at concentrations of 50, 100, and 200 μg/mL at 30 nm nanoparticle exposures. However, silica nanoparticles larger than 30 nm showed no changes in GSH levels. Reactive oxygen species (ROS) formation did not show any significant change between controls and the exposed cells. In summary, amorphous silica nanoparticles below 100 nm induced cytotoxicity suggest size of the particles is critical to produce biological effects. © 2008 Springer Science+Business Media B.V.

Cite

CITATION STYLE

APA

Yu, K. O., Grabinski, C. M., Schrand, A. M., Murdock, R. C., Wang, W., Gu, B., … Hussain, S. M. (2009). Toxicity of amorphous silica nanoparticles in mouse keratinocytes. Journal of Nanoparticle Research, 11(1), 15–24. https://doi.org/10.1007/s11051-008-9417-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free