Crossover behavior of the thermal conductance and Kramers' transition rate theory

26Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Kramers' theory frames chemical reaction rates in solution as reactants overcoming a barrier in the presence of friction and noise. For weak coupling to the solution, the reaction rate is limited by the rate at which the solution can restore equilibrium after a subset of reactants have surmounted the barrier to become products. For strong coupling, there are always sufficiently energetic reactants. However, the solution returns many of the intermediate states back to the reactants before the product fully forms. Here, we demonstrate that the thermal conductance displays an analogous physical response to the friction and noise that drive the heat current through a material or structure. A crossover behavior emerges where the thermal reservoirs dominate the conductance at the extremes and only in the intermediate region are the intrinsic properties of the lattice manifest. Not only does this shed new light on Kramers' classic turnover problem, this result is significant for the design of devices for thermal management and other applications, as well as the proper simulation of transport at the nanoscale.

Cite

CITATION STYLE

APA

Velizhanin, K. A., Sahu, S., Chien, C. C., Dubi, Y., & Zwolak, M. (2015). Crossover behavior of the thermal conductance and Kramers’ transition rate theory. Scientific Reports, 5. https://doi.org/10.1038/srep17506

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free