Rodent models of TDP-43 proteinopathy: Investigating the mechanisms of TDP-43-mediated neurodegeneration

58Citations
Citations of this article
132Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Since the identification of phosphorylated and truncated transactive response DNA-binding protein 43 (TDP-43) as a primary component of ubiquitinated inclusions in amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions, much effort has been directed towards ascertaining how TDP-43 contributes to the pathogenesis of disease. As with other protein misfolding disorders, TDP-43-mediated neuronal death is likely caused by both a toxic gain and loss of TDP-43 function. Indeed, the presence of cytoplasmic TDP-43 inclusions is associated with loss of nuclear TDP-43. Moreover, post-translational modifications of TDP-43, including phosphorylation, ubiquitination, and cleavage into C-terminal fragments, may bestow toxic properties upon TDP-43 and cause TDP-43 dysfunction. However, the exact neurotoxic TDP-43 species remain unclear, as do the mechanism(s) by which they cause neurotoxicity. Additionally, given our incomplete understanding of the roles of TDP-43, both in the nucleus and the cytoplasm, it is difficult to truly appreciate the detrimental consequences of aberrant TDP-43 function. The development of TDP-43 transgenic animal models is expected to narrow these gaps in our knowledge. The aim of this review is to highlight the key findings emerging from TDP-43 transgenic animal models and the insight they provide into the mechanisms driving TDP-43-mediated neurodegeneration. © 2011 The Author(s).

Cite

CITATION STYLE

APA

Gendron, T. F., & Petrucelli, L. (2011). Rodent models of TDP-43 proteinopathy: Investigating the mechanisms of TDP-43-mediated neurodegeneration. In Journal of Molecular Neuroscience (Vol. 45, pp. 486–499). https://doi.org/10.1007/s12031-011-9610-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free