A novel simple particle swarm optimization algorithm for global optimization

30Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

Abstract

In order to overcome the several shortcomings of Particle Swarm Optimization (PSO) e.g., premature convergence, low accuracy and poor global searching ability, a novel Simple Particle Swarm Optimization based on Random weight and Confidence term (SPSORC) is proposed in this paper. The original two improvements of the algorithm are called Simple Particle Swarm Optimization (SPSO) and Simple Particle Swarm Optimization with Confidence term (SPSOC), respectively. The former has the characteristics of more simple structure and faster convergence speed, and the latter increases particle diversity. SPSORC takes into account the advantages of both and enhances exploitation capability of algorithm. Twenty-two benchmark functions and four state-of-the-art improvement strategies are introduced so as to facilitate more fair comparison. In addition, a t-test is used to analyze the differences in large amounts of data. The stability and the search efficiency of algorithms are evaluated by comparing the success rates and the average iteration times obtained from 50-dimensional benchmark functions. The results show that the SPSO and its improved algorithms perform well comparing with several kinds of improved PSO algorithms according to both search time and computing accuracy. SPSORC, in particular, is more competent for the optimization of complex problems. In all, it has more desirable convergence, stronger stability and higher accuracy.

Cite

CITATION STYLE

APA

Zhang, X., Zou, D., & Shen, X. (2018). A novel simple particle swarm optimization algorithm for global optimization. Mathematics, 6(12). https://doi.org/10.3390/math6120287

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free