Thiamine deficiency contributes to synapse and neural circuit defects

17Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The previous studies have demonstrated the reduction of thiamine diphosphate is specific to Alzheimer's disease (AD) and causal factor of brain glucose hypometabolism, which is considered as a neurodegenerative index of AD and closely correlates with the degree of cognitive impairment. The reduction of thiamine diphosphate may contribute to the dysfunction of synapses and neural circuits, finally leading to cognitive decline. Results: To demonstrate this hypothesis, we established abnormalities in the glucose metabolism utilizing thiamine deficiency in vitro and in vivo, and we found dramatically reduced dendrite spine density. We further detected lowered excitatory neurotransmission and impaired hippocampal long-term potentiation, which are induced by TPK RNAi in vitro. Importantly, via treatment with benfotiamine, Aβ induced spines density decrease was considerably ameliorated. Conclusions: These results revealed that thiamine deficiency contributed to synaptic dysfunction which strongly related to AD pathogenesis. Our results provide new insights into pathogenesis of synaptic and neuronal dysfunction in AD.

Cite

CITATION STYLE

APA

Yu, Q., Liu, H., Sang, S., Chen, L., Zhao, Y., Wang, Y., & Zhong, C. (2018). Thiamine deficiency contributes to synapse and neural circuit defects. Biological Research, 51(1). https://doi.org/10.1186/s40659-018-0184-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free