Bruton’s Tyrosine Kinase Is Involved in miR-346-Related Regulation of IL-18 Release by Lipopolysaccharide-Activated Rheumatoid Fibroblast-Like Synoviocytes

  • Alsaleh G
  • Suffert G
  • Semaan N
  • et al.
131Citations
Citations of this article
67Readers
Mendeley users who have this article in their library.

Abstract

MicroRNAs (miRNAs) have emerged as key players in the regulation of expression of target mRNAs expression. They have been associated with diverse biological processes, and recent studies have demonstrated that miRNAs play a role in inflammatory responses. We reported previously that LPS-activated fibroblast-like synoviocytes (FLS) isolated from rheumatoid arthritis (RA) patients express IL-18 mRNA but they do not release IL-18. Based on the observation that this inhibition was due to a rapid degradation of IL-18 mRNA, our group has conducted a study to identify miRNAs that could play a role in the “antiinflammatory” response of LPS-activated RA FLS. LPS challenge modulated the expression of 63 miRNAs as assessed by microarray analysis. Fifteen miRNAs were up-regulated, including miR-346, for which overexpression upon LPS treatment was validated by quantitative RT-PCR. We then transfected FLS with an antisense oligonucleotide targeting miR-346 and found that, in these conditions, IL-18 release could be measured upon LPS activation of FLS. Moreover, we also demonstrated that miR-346 indirectly regulated IL-18 release by indirectly inhibiting LPS-induced Bruton’s tyrosine kinase expression in LPS-activated RA FLS. These findings suggest that miRNAs function as regulators that help to fine-tune the inflammatory response in RA.

Cite

CITATION STYLE

APA

Alsaleh, G., Suffert, G., Semaan, N., Juncker, T., Frenzel, L., Gottenberg, J.-E., … Wachsmann, D. (2009). Bruton’s Tyrosine Kinase Is Involved in miR-346-Related Regulation of IL-18 Release by Lipopolysaccharide-Activated Rheumatoid Fibroblast-Like Synoviocytes. The Journal of Immunology, 182(8), 5088–5097. https://doi.org/10.4049/jimmunol.0801613

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free