Human perception-based washout filtering using genetic algorithm

53Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The Motion Cueing Algorithm (MCA) transforms longitudinal and rotational motions into simulator movement, aiming to regenerate high fidelity motion within the simulators physical limitations. Classical washout filters are widely used in commercial simulators because of their relative simplicity and reasonable performance. The main drawback of classical washout filters is the inappropriate empirical parameter tuning method that is based on trial-and-error, and is effected by programmers’ experience. This is the most important obstacle to exploiting the platform efficiently. Consequently, the conservative motion produces false cue motions. Lack of consideration for human perception error is another deficiency of classical washout filters and also there is difficulty in understanding the effect of classical washout filter parameters on generated motion cues. The aim of this study is to present an effortless optimization method for adjusting the classical MCA parameters, based on the Genetic Algorithm (GA) for a vehicle simulator in order to minimize human sensation error between the real and simulator driver while exploiting the platform within its physical limitations. The vestibular sensation error between the real and simulator driver as well as motion limitations have been taken into account during optimization. The proposed optimized MCA based on GA is implemented in MATLAB/Simulink. The results show the superiority of the proposed MCA as it improved the human sensation, maximized reference signal shape following and exploited the platform more efficiently within the motion constraints.

Cite

CITATION STYLE

APA

Asadi, H., Mohamed, S., Nelson, K., Nahavandi, S., & Zadeh, D. R. (2015). Human perception-based washout filtering using genetic algorithm. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9490, pp. 401–411). Springer Verlag. https://doi.org/10.1007/978-3-319-26535-3_46

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free