Background: The approach of RNAi mediated gene knockdown, employing exogenous dsRNA, is being beneficially exploited in various fields of functional genomics. The immense utility of the approach came to fore from studies with model system C. elegans, but quickly became applicable with varied research models ranging from in vitro to various in vivo systems. Previously, there have been reports on the refractoriness of the neuronal cells to RNAi mediated gene silencing following which several modulators like eri-1 and lin-15 were described in C. elegans which, when present, would negatively impact the gene knockdown. Methodology/Principal Findings: Taking a clue from these findings, we went on to screen hypothesis-driven-methodologies towards exploring the efficiency in the process of RNAi under various experimental conditions, wherein these genes would be knocked down preceding to, or concurrently with, the knocking down of a gene of interest. For determining the efficiency of gene knockdown, we chose to study visually stark phenotypes of uncoordinated movement, dumpy body morphology and blistered cuticle obtained by knocking down of genes unc-73, dpy-9 and bli-3 respectively, employing the RNAi-by-feeding protocol in model system C. elegans. Conclusions/Significance: Our studies led to a very interesting outcome as the results reveal that amongst various methods tested, pre-incubation with eri-1 dsRNA synthesizing bacteria followed by co-incubation with eri-1 and gene-of-interest dsRNA synthesizing bacteria leads to the most efficient gene silencing as observed by the analysis of marker phenotypes. This provides an approach for effectively employing RNAi induced gene silencing while working with different genetic backgrounds including transgenic and mutant strains. © 2014 Jadiya, Nazir.
CITATION STYLE
Jadiya, P., & Nazir, A. (2014). A pre- And co-knockdown of RNAseT enzyme, eri-1, enhances the efficiency of rnai induced gene silencing in caenorhabditis elegans. PLoS ONE, 9(1). https://doi.org/10.1371/journal.pone.0087635
Mendeley helps you to discover research relevant for your work.