Synaptic neuron-astrocyte communication is supported by an order of magnitude analysis of inositol tris-phosphate diffusion at the nanoscale in a model of peri-synaptic astrocyte projection

7Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Astrocytes were conceived for decades only as supporting cells of the brain. However, the observation of Ca2+ waves in astrocyte synctitia, their neurotransmitter receptor expression and gliotransmitter secretion suggested a role in information handling, conception that has some controversies. Synaptic Neuron-Astrocyte metabotropic communication mediated by Inositol tris-phosphate (SN-AmcIP3) is supported by different reports. However, some models contradict this idea and Ca2+ stores are 1000 ± 325 nm apart from the Postsynaptic Density in the Perisynaptic Astrocyte Projections (PAP's), suggesting that SN-AmcIP3 is extrasynaptic. However, this assumption does not consider IP3 Diffusion Coefficient (Dab), that activates IP3 Receptor (IP3R) releasing Ca2+ from intracellular stores. Results: In this work we idealized a model of a PAP (PAPm) to perform an order of magnitude analysis of IP3 diffusion using a transient mass diffusion model. This model shows that IP3 forms a concentration gradient along the PAPm that reaches the steady state in milliseconds, three orders of magnitude before IP3 degradation. The model predicts that IP3 concentration near the Ca2+ stores may activate IP3R, depending upon Phospholipase C (PLC) number and activity. Moreover, the PAPm supports that IP3 and extracellular Ca2+ entry synergize to promote global Ca2+ transients. Conclusion: The model presented here indicates that Ca2+ stores position in PAP's does not limit SN-AmcIP3.

Cite

CITATION STYLE

APA

Montes de Oca Balderas, P., & Montes de Oca Balderas, H. (2018). Synaptic neuron-astrocyte communication is supported by an order of magnitude analysis of inositol tris-phosphate diffusion at the nanoscale in a model of peri-synaptic astrocyte projection. BMC Biophysics, 11(1). https://doi.org/10.1186/s13628-018-0043-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free