Molecular nanotechnology is a rapidly developing field, and tremendous progress has been made in developing synthetic molecular machines. One long-sought after nanotechnology is systems able to achieve the assembly-line like production of molecules. Here we report the discovery of a rudimentary synthetic molecular assembler that produces polymers. The molecular assembler is a supramolecular aggregate of bifunctional surfactants produced by the reaction of two phase-separated reactants. Initially self-reproduction of the bifunctional surfactants is observed, but once it reaches a critical concentration the assembler starts to produce polymers instead of supramolecular aggregates. The polymer size can be controlled by adjusting temperature, reaction time, or introducing a capping agent. There has been considerable debate about molecular assemblers in the context of nanotechnology, our demonstration that primitive assemblers may arise from simple phase separated reactants may provide a new direction for the design of functional supramolecular systems.
CITATION STYLE
Engwerda, A. H. J., & Fletcher, S. P. (2020). A molecular assembler that produces polymers. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-17814-0
Mendeley helps you to discover research relevant for your work.