A series of monometallic and bimetallic cocatalyst(s), comprising FeOx, CuOx, CoOx, FeOx-CuOx, and FeOx-CoOx loaded TiO2 catalysts prepared by the surface impregnation method, were investigated for the photocatalytic mineralization of the widely used four herbicides: 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,4-dichlorophenoxyacetic acid (2,4-D), and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T). It was found that FeOx-CoOx/TiO2 showed the highest photocatalytic efficiency toward mineralization of selected herbicides. FeOx-CoOx/TiO2 achieves 92% TOC removal in 180 min, representing nearly three time activity of the benchmark PC50 TiO2. From XPS analysis, FeOOH, CuO, and CoO were determined to be loaded onto the TiO2 surface. The outstanding photocatalytic performance of the optimized FeOx-CoOx/TiO2 sample for herbicides mineralization is due to an increased charge separation and enhanced hydroxyl radicals production monitored by diverse spectroscopies. Based on the proposed charge transfer mechanism, FeOx-CoOx cocatalyst species accelerate the transfer of photogenerated holes on TiO2, thus facilitating hydroxyl radicals production.
CITATION STYLE
Shoneye, A., Jiao, H., & Tang, J. (2023). Bimetallic FeOx-MOx Loaded TiO2 (M = Cu, Co) Nanocomposite Photocatalysts for Complete Mineralization of Herbicides. Journal of Physical Chemistry C, 127(3), 1388–1396. https://doi.org/10.1021/acs.jpcc.2c06796
Mendeley helps you to discover research relevant for your work.