Analisis Cluster dengan Metode Partitioning dan Hierarki pada Data Informasi Kemiskinan Provinsi di Indonesia Tahun 2019

  • Afira N
  • Wijayanto A
N/ACitations
Citations of this article
333Readers
Mendeley users who have this article in their library.

Abstract

Kemiskinan merupakan salah satu indikator penting dalam melihat keberhasilan pembangunan ekonomi suatu negara. Tingkat kemiskinan di Indonesia sebesar 9,22 persen dengan jumlah penduduk miskin sebanyak 24,79 juta jiwa. Data kemiskinan di setiap daerah akan berbeda dipengaruhi oleh berbagai indikator. Oleh karena itu penting untuk mengelompokkan daerah-daerah di Indonesia berdasarkan karakteristik kemiskinan sehingga pemerintah dapat dengan tepat mengambil kebijakan terkait penanggulangan kemiskinan. Penelitian ini menggunakan dua metode clustering, yaitu partitioning dan hierarki untuk mengelompokkan provinsi-provinsi di Indonesia berdasarkan karakteristik kemiskinan. Metode partitioning yang dipilih adalah K-Means. Data yang digunakan adalah 8 variabel kemiskinan pada 34 provinsi di Indonesia tahun 2019. Penentuan jumlah cluster menggunakan validasi internal  dan validasi stabilitias menunjukkan bahwa metode hierarki dengan jumlah cluster 2 menghasilkan cluster yang paling optimal. Perbandingan metode hierarki dinilai berdasarkan agglomerative coefficient, dimana metode Ward mampu memberikan hasil pengelompokan terbaik.

Cite

CITATION STYLE

APA

Afira, N., & Wijayanto, A. W. (2021). Analisis Cluster dengan Metode Partitioning dan Hierarki pada Data Informasi Kemiskinan Provinsi di Indonesia Tahun 2019. Komputika : Jurnal Sistem Komputer, 10(2), 101–109. https://doi.org/10.34010/komputika.v10i2.4317

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free