Background--Neointimal hyperplasia following angioplasty occurs via vascular smooth muscle cell proliferation. The mechanisms involved are not fully understood but include mitogen-activated protein kinases ERK1/2 (extracellular signal-regulated kinases 1 and 2). We recently identified the intracellular mediator PEA-15 (phosphoprotein enriched in astrocytes 15) in vascular smooth muscle cells as a regulator of ERK1/2-dependent proliferation in vitro. PEA-15 acts as a cytoplasmic anchor for ERK1/2, preventing nuclear localization and thereby reducing ERK1/2-dependent gene expression. The aim of the current study was to examine the role of PEA-15 in neointimal hyperplasia in vivo. Method and Results--Mice deficient in PEA-15 or wild-type mice were subjected to wire injury of the carotid artery. In uninjured arteries from PEA-15-deficient mice, ERK1/2 had increased nuclear translocation and increased basal ERK1/2-dependent transcription. Following wire injury, arteries from PEA-15-deficient mice developed neointimal hyperplasia at an increased rate compared with wild-type mice. This occurred in parallel with an increase in a proliferative marker and vascular smooth muscle cell proliferation. In wild-type mice, PEA-15 expression was decreased in vascular smooth muscle cells at an early stage before any increase in intima:media ratio. This regulation of PEA-15 expression following injury was also observed in an ex vivo human model of hyperplasia. Conclusions--These results indicate, for the first time, a novel protective role for PEA-15 against inappropriate vascular proliferation. PEA-15 expression may also be repressed during vascular injury, suggesting that maintenance of PEA-15 expression is a novel therapeutic target in vascular disease.
CITATION STYLE
Greig, F. H., Kennedy, S., Gibson, G., Ramos, J. W., & Nixon, G. F. (2017). PEA-15 (phosphoprotein enriched in astrocytes 15) is a protective mediator in the vasculature and is regulated during neointimal hyperplasia. Journal of the American Heart Association, 6(9). https://doi.org/10.1161/JAHA.117.006936
Mendeley helps you to discover research relevant for your work.