Applications of Machine Learning in Cardiac Electrophysiology

15Citations
Citations of this article
56Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Artificial intelligence through machine learning (ML) methods is becoming prevalent throughout the world, with increasing adoption in healthcare. Improvements in technology have allowed early applications of machine learning to assist physician efficiency and diagnostic accuracy. In electrophysiology, ML has applications for use in every stage of patient care. However, its use is still in infancy. This article will introduce the potential of ML, before discussing the concept of big data and its pitfalls. The authors review some common ML methods including supervised and unsupervised learning, then examine applications in cardiac electrophysiology. This will focus on surface electrocardiography, intracardiac mapping and cardiac implantable electronic devices. Finally, the article concludes with an overview of how ML may impact on electrophysiology in the future.

Cite

CITATION STYLE

APA

Muthalaly, R. G., & Evans, R. M. (2020). Applications of Machine Learning in Cardiac Electrophysiology. Arrhythmia and Electrophysiology Review, 9(2), 71–77. https://doi.org/10.15420/aer.2019.19

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free