The Casimir force is a consequence of quantum electrodynamic fluctuations, which induce interactions between materials. Patch potentials (i.e., spatial variations of electrostatic potentials across a surface) are a concern in measurements of the Casimir force because they can cause an additional force with a similar separation dependence. Previously, Kelvin probe force microscopy has been used to show that patch potentials on a flat surface cause an additional force that can reach over 1% of the value of the predicted Casimir force. Although nearly all Casimir force measurements are performed in a sphere-plate geometry, there has been little investigation into how the patches are distributed on the sphere. Here we present a measurement of the Casimir force between a sphere and a plate, where the electrostatic patch potentials are mapped on both surfaces and their effects are determined. Large patches are detected for gold deposited onto glass, but an ion-blocking layer is shown to reduce the voltage contrast and spatial extent of the patches. We find that the patch potential force is at least an order of magnitude less than the Casimir force when the sphere contains an ion-blocking layer; however, without this ion-blocking layer, the measured force can contain a significant electrostatic contribution, hence masking the Casimir force. Our results show the importance of measuring the electrostatic patches for individual Casimir force experiments.
CITATION STYLE
Garrett, J. L., Kim, J., & Munday, J. N. (2020). Measuring the effect of electrostatic patch potentials in Casimir force experiments. Physical Review Research, 2(2). https://doi.org/10.1103/PhysRevResearch.2.023355
Mendeley helps you to discover research relevant for your work.