Multi-Objective Optimization Method for Task Scheduling and Resource Allocation in Cloud Environment

2Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

In the cloud environment, the process of task scheduling and resource allocation plays a vital role in cloud resource management. The unpredictable and uncertain behaviour of the task arrival rate poses significant challenges in the effective allocation of resources. An efficient scheduling technique is essential to avoid under or overutilization of resources. In order to increase the performance of scheduling and allocation, this paper presents multi-objective optimization method for optimal resource allocation and task scheduling based on a three-stage strategy. In the first stage, a description of tasks and virtual machines is prepared. At stage two, tasks are classified and labelled based on the resource demand and execution time. Finally, the modified-Grey Wolf optimization algorithm is used for the allocation and scheduling of tasks for a disparate scenario. The experimental results proved that the proposed method reduced the makespan time and cost with an improved utilization rate.

Cite

CITATION STYLE

APA

Channappa, A. K., Ramaiah, N., & Rajanna, S. B. (2022). Multi-Objective Optimization Method for Task Scheduling and Resource Allocation in Cloud Environment. Revue d’Intelligence Artificielle, 36(2), 223–232. https://doi.org/10.18280/ria.360206

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free