The present research quantified the risk mitigation indices associated with some risk mitigation protocols practiced by humans in Nigeria to mitigate the baseline risk of illness that were associated with Clarias gariepinus contaminated with multidrug-resistant AmpC beta-lactamase-producing Enterobacter cloacae pathogen. Identification of the multidrug-resistant AmpC beta-lactamase-producing E. cloacae pathogen was performed with phenotypic and molecular methods. The United States FDA-iRisk stochastic software quantified the baseline and residual risk of illness associated with the contamination and crosscontamination routes of the C. gariepinus chain. The fresh adult C. gariepinus was contaminated with the multidrug-resistant E. cloacae pathogen (median concentration = 4.49 CFU g-1), but this was significantly reduced by the risk mitigation protocols practiced by the human consumers. The risk mitigation practices of human consumers resulted in a risk mitigation index of 0.92, which was equivalent to a 92% reduction in the baseline risk of illness (baseline risk of illness = 7.58 x 10-4; residual risk of illness = 5.9 x 10-5). In spite of the significant risk mitigation, inducible AmpC beta-lactamase resistance genes was still found in the residual multidrug-resistant Enterobacter cloacae pathogen, which survived the inadequate risk mitigation protocols that accounted for 8% residual risk of illness.
CITATION STYLE
Imade, O. S., & Akinnibosun, F. I. (2020). The risk mitigation indices associated with some risk mitigation protocols performed on contaminated aqua-cultured catfish (Clarias gariepinus). Notulae Scientia Biologicae, 12(1), 172–183. https://doi.org/10.15835/NSB12110633
Mendeley helps you to discover research relevant for your work.