Thermal and calorimetric evaluations of some chemically modified carbohydrate-based substrates with phosphorus-containing groups

8Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

In the present article, we report on the chemical modifications of some carbohydrate-based substrates, such as potato starch, dextran, β-cyclodextrin, agar agar and tamarind, by reacting with diethylchlorophosphate (DECP), in dispersions in dichloromethane (DCM), in the presence of triethylamine (TEA) as the base. The modified substrates, after recovery and purification, were analyzed for their chemical constitutions, thermal stabilities and calorimetric properties using a variety of analytical techniques. These included: solid-state 31P NMR, inductively coupled plasma-optical emission spectroscopy (ICP-OES), thermogravimetric analysis (TGA) and pyrolysis combustion flow calorimetry (PCFC). The unmodified counterparts were also subjected to the same set of analyses with a view to serving as controls. Phosphorus analyses, primarily through ICP-OES on the recovered samples, showed different degrees of incorporation. Such observations were optionally verified through solid-state 31P NMR spectroscopy. The thermograms of the modified substrates were noticeably different from the unmodified counterparts, both in terms of the general profiles and the amounts of char residues produced. Such observations correlated well with the relevant parameters obtained through PCFC runs. Overall, the modified systems containing phosphorus were found to be less combustible than the parent substrates, and thus can be considered as promising matrices for environmentally benign fire-resistant coatings.

Cite

CITATION STYLE

APA

Thomas, A., Joseph, P., Moinuddin, K., Zhu, H., & Tretsiakova-McNally, S. tretsiakova mcnally@ulster ac uka. (2020). Thermal and calorimetric evaluations of some chemically modified carbohydrate-based substrates with phosphorus-containing groups. Polymers, 12(3). https://doi.org/10.3390/polym12030588

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free