New generationwearable antenna based on multimaterial fiber forwireless communication and real-time breath detection

23Citations
Citations of this article
80Readers
Mendeley users who have this article in their library.

Abstract

Smart textiles and wearable antennas along with broadband mobile technologies have empowered the wearable sensors for significant impact on the future of digital health care. Despite the recent development in this field, challenges related to lack of accuracy, reliability, user's comfort, rigid form and challenges in data analysis and interpretation have limited their wide-scale application. Therefore, the necessity of developing a new reliable and user friendly approach to face these problems is more than urgent. In this paper, a new generation of wearable antenna is presented, and its potential use as a contactless and non-invasive sensor for human breath detection is demonstrated. The antenna is made from multimaterial fiber designed for short-range wireless network applications at 2.4 GHz frequency. The used composite metal-glass-polymer fibers permits their integration into a textile without compromising comfort or restricting movement of the user due to their high flexibility, and shield efficiently the antenna from the environmental perturbation. The multimaterial fiber approach provided a good radio-frequency emissive properties, while preserving the mechanical and cosmetic properties of the garments. With a smart textile featuring a spiral shape fiber antenna placed on a human chest, a significant shift of the operating frequency of the antenna was observed during the breathing process. The frequency shift is caused by the deformation of the antenna geometry due to the chest expansion, and to the modification of the dielectric properties of the chest during the breath. We demonstrate experimentally that the standard wireless networks, which measure the received signal strength indicator (RSSI) via standard Bluetooth protocol, can be used to reliably detect human breathing and estimate the breathing rate in real time. The mobile platform takes the form of a wearable stretching T-shirt featuring a sensor and a detection base station. The sensor is formed by a spiral-shaped antenna connected to a compact Bluetooth transmitter. Breathing patterns were recorded in the case of female and male volunteers. Although the chest anatomy of females and males is different compared, the sensor's flexibility allowed recording successfully a breathing rate of 0.3 Hz for the female and 0.5 Hz for the male, which corresponds to a breathing rate of 21 breaths per minutes (bpm) and 30 bpm, respectively.

Cite

CITATION STYLE

APA

Roudjane, M., Khalil, M., Miled, A., & Messaddeq, Y. (2018, December 1). New generationwearable antenna based on multimaterial fiber forwireless communication and real-time breath detection. Photonics. MDPI AG. https://doi.org/10.3390/photonics5040033

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free