Improved Simulated Annealing Based Network Model for E-Recycling Reverse Logistics Decisions under Uncertainty

8Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Electronic waste recycle (e-recycling) is gaining increasing importance due to greater environmental concerns, legislation, and corporate social responsibility. A novel approach is explored for designing the e-recycling reverse logistics network (RLN) under uncertainty. The goal is to obtain a solution, i.e., increasing the storage capacity of the logistics node, to achieve optimal or near-optimal profit under the collection requirement set by the government and the investment from the enterprise. The approach comprises two parts: A matrix-based simulation model of RLN formed for the uncertainty of demand and reverse logistics collection which calculates the profit under a given candidate solution and simulated annealing (SA) algorithm that is tailored to generating solution using the output of RLN model. To increase the efficiency of the SA algorithm, network static analysis is proposed for getting the quantitative importance of each node in RLN, including the static network generation process and index design. Accordingly, the quantitative importance is applied to increase the likelihood of generating a better candidate solution in the neighborhood search of SA. Numerical experimentation is conducted to validate the RLN model as well as the efficiency of the improved SA.

Cite

CITATION STYLE

APA

Wang, L., Goh, M., Ding, R., & Mishra, V. K. (2018). Improved Simulated Annealing Based Network Model for E-Recycling Reverse Logistics Decisions under Uncertainty. Mathematical Problems in Engineering, 2018. https://doi.org/10.1155/2018/4390480

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free