The Drosophila female germline stem cell (GSC) niche provides an excellent model for understanding the stem cell niche in vivo. The GSC niche is composed of stromal cells that provide growth factors for the maintenance of GSCs and the associated extracellular matrix (ECM). Although the function of stromal cells/growth factors has been well studied, the function of the ECM in the GSC niche is largely unknown. In this study, we investigated the function of syndecan and perlecan, molecules of the heparan sulfate proteoglycan (HSPG) family, as the main constituents of the ECM. We found that both of these genes were expressed in niche stromal cells, and knockdown of them in stromal cells decreased GSC number, indicating that these genes are important niche components. Interestingly, our genetic analysis revealed that the effects of syndecan and perlecan on the maintenance of GSC were distinct. While the knockdown of perlecan in the GSC niche increased the number of cystoblasts, a phenotype suggestive of delayed differentiation of GSCs, the same was not true in the context of syndecan. Notably, the overexpression of syndecan and perlecan did not cause an expansion of the GSC niche, opposing the results reported in the context of glypican, another HSPG gene. Altogether, our data suggest that HSPG genes contribute to the maintenance of GSCs through multiple mechanisms, such as the control of signal transduction, and ligand distribution/stabilization. Therefore, our study paves the way for a deeper understanding of the ECM functions in the stem cell niche.
CITATION STYLE
Hayashi, Y., Shibata, A., Kamimura, K., & Kobayashi, S. (2021). Heparan sulfate proteoglycan molecules, syndecan and perlecan, have distinct roles in the maintenance of Drosophila germline stem cells. Development Growth and Differentiation, 63(6), 295–305. https://doi.org/10.1111/dgd.12741
Mendeley helps you to discover research relevant for your work.