Purpose: There is little information available regarding the cage diameter that can provide the most rigid construct reconstruction after total en bloc spondylectomy (TES). The aim of this study was thus to determine the most appropriate titanium mesh cage diameter for reconstruction after spondylectomy. Methods: A finite element model of the single level lumbar TES was created. Six models of titanium mesh cage with diameters of 1/3, 1/2, 2/3, 3/4, 4/5 of the caudad adjacent vertebra, and 1/1 of the cephalad vertebra were tested for construct stiffness. The peak von Mises stress (MPa) at the failure point and the site of failure were measured as outcomes. A cadaveric validation study also conducted to validate the finite element model. Results: For axial loading, the maximum stress points were at the titanium mesh cage, with maximum stress of 44,598 MPa, 23,505 MPa, 23,778 MPa, and 16,598 MPa, 10,172 MPa, 10,805 MPa in the 1/3, 1/2, 2/3, 3/4, 4/5, and 1/1 diameter model, respectively. For torsional load, the maximum stress point in each of the cages was identified at the rod area of the spondylectomy site, with maximum stress of 390.9 MPa (failed at 4459 cycles), 141.35 MPa, 70.098 MPa, and 88.972 MPa, 42.249 MPa, 15.827 MPa, respectively. A cadaveric validation study results were coincided with the finite element model results. Conclusion: The most appropriate mesh cage diameter for reconstruction is 1/1 the diameter of the lower endplate of the adjacent cephalad vertebra, due to its ability to withstand both axial and torsional stress. According to the difficulty of large size cage insertion, a cage diameter of more than half of the upper endplate of the caudad vertebrae is acceptable in term of withstand stress. A cage diameter of 1/3 is unacceptable for reconstruction after total en bloc spondylectomy.
CITATION STYLE
Paholpak, P., Sirichativapee, W., Wisanuyotin, T., Kosuwon, W., Kasai, Y., & Murakami, H. (2021). The most appropriate titanium mesh cage size for anterior spinal reconstruction after single-level lumbar total en bloc spondylectomy: a finite element analysis and cadaveric validation study. Journal of Orthopaedic Surgery and Research, 16(1). https://doi.org/10.1186/s13018-021-02326-4
Mendeley helps you to discover research relevant for your work.