The processes leading to hydrogen-related fracture in X80 pipeline steel with stress concentration have been investigated comprehensively through observations of fracture surfaces and subsidiary cracks, a stress analysis, crack initiation and propagation analyses and a crystallographic analysis of fracture surfaces. Fracture morphology showed quasi-cleavage (QC) fracture under various amounts of hydrogen. It was found that QC cracks initiated in the area ranging from the notch tip to 100 µm inside based on interrupted tensile tests just before fracture strength with hydrogen charging. Moreover, fracture surface topography analysis (FRASTA) revealed that QC cracks initiated at the notch tip. A finite element analysis indicated that the equivalent plastic strain was maximum at the crack initiation site at the notch tip. In addition, a backscattered electron image showed that nanovoids of 50-250 µm in diameter were present near the initiation site. Regarding the crack propagation process, field emission scanning electron microscopy (FE-SEM), electron backscattered diffraction (EBSD) and FRASTA results indicated that some microcracks in ferrite grains coalesced stepwise and propagated. Trace analyses using EBSD revealed that the QC fracture surface consisted of {011} slip planes, {001} cleavage planes and non-specific index planes. These findings indicate that QC fracture initiates at the notch tip due to the interaction between dislocations and hydrogen associated with local plastic deformation, and propagates stepwise by coalescence through vacancies, nanovoids and microcracks on various planes associated with/without plastic deformation in ferrite grains.
CITATION STYLE
Homma, T., Anata, S., Onuki, S., & Takai, K. (2020). Crack initiation and propagation behavior of hydrogen-induced quasi-cleavage fracture in X80 pipeline steel with stress concentration. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 106(9), 651–661. https://doi.org/10.2355/tetsutohagane.TETSU-2019-126
Mendeley helps you to discover research relevant for your work.