INPP5D deficiency attenuates amyloid pathology in a mouse model of Alzheimer's disease

29Citations
Citations of this article
47Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Introduction: Inositol polyphosphate-5-phosphatase (INPP5D) is a microglia-enriched lipid phosphatase in the central nervous system. A non-coding variant (rs35349669) in INPP5D increases the risk for Alzheimer's disease (AD), and elevated INPP5D expression is associated with increased plaque deposition. INPP5D negatively regulates signaling via several microglial cell surface receptors, including triggering receptor expressed on myeloid cells 2 (TREM2); however, the impact of INPP5D inhibition on AD pathology remains unclear. Methods: We used the 5xFAD mouse model of amyloidosis to assess how Inpp5d haplodeficiency regulates amyloid pathogenesis. Results: Inpp5d haplodeficiency perturbs the microglial intracellular signaling pathways regulating the immune response, including phagocytosis and clearing of amyloid beta (Aβ). It is important to note that Inpp5d haploinsufficiency leads to the preservation of cognitive function. Spatial transcriptomic analysis revealed that pathways altered by Inpp5d haploinsufficiency are related to synaptic regulation and immune cell activation. Conclusion: These data demonstrate that Inpp5d haplodeficiency enhances microglial functions by increasing plaque clearance and preserves cognitive abilities in 5xFAD mice. Inhibition of INPP5D is a potential therapeutic strategy for AD.

Cite

CITATION STYLE

APA

Lin, P. B. C., Tsai, A. P. Y., Soni, D., Lee-Gosselin, A., Moutinho, M., Puntambekar, S. S., … Oblak, A. L. (2023). INPP5D deficiency attenuates amyloid pathology in a mouse model of Alzheimer’s disease. Alzheimer’s and Dementia, 19(6), 2528–2537. https://doi.org/10.1002/alz.12849

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free