A superfine Li0.33La0.557TiO3 (LLTO, 69.4 nm) was successfully synthesized by a facile solvent-thermal method to enhance the electrochemical properties of the lithium-ion battery separator. Co-axial nanofiber of cellulose and Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) was prepared by a co-axial electrospinning technique, in which the shell material was PVDF-HFP and the core was cellulose. LLTO superfine nanoparticles were incorporated into the shell of the PVDF-HFP. The core-shell composite nanofibrous membrane showed good wettability (16.5°, contact angle), high porosity (69.77%), and super electrolyte compatibility (497%, electrolyte uptake). It had a higher ionic conductivity (13.897 mS·cm-1) than those of pure polymer fibrous membrane and commercial separator. In addition, the rate capability (155.56 mAh·g-1) was also superior to the compared separator. These excellent performances endowed LLTO composite nanofibrous membrane as a promising separator for high-performance lithium-ion batteries.
CITATION STYLE
Huang, F., Liu, W., Li, P., Ning, J., & Wei, Q. (2016). Electrochemical properties of LLTO/fluoropolymer-shell cellulose-core fibrous membrane for separator of high performance lithium-ion battery. Materials, 9(2). https://doi.org/10.3390/ma9020075
Mendeley helps you to discover research relevant for your work.