In the present study, a simple-to-use method is proposed for a preliminary prediction of the occurrence of shallow landslides (generally, with a thickness of 1–2 m) due to rainfall. This method can be used when a water table forms within the slope or the existing groundwater level rises due to rain infiltration, resulting in an increase in the pore water pressure. A relationship is also provided to establish when these conditions occur and the method can consequently be used. The proposed method combines a simplified solution to evaluate the change in pore water pressure within the slope due to infiltration, with the simple scheme of infinite slope to calculate a critical value of the pore water pressure that determines the incipient failure condition of the slope. In this way, a threshold curve can be also determined to readily assess whether a rainfall event with expected intensity and duration is capable of causing a slope failure at a given depth, where the initial pore water pressure is known. The method is completely analytical and only requires a few parameters as input data, which in addition can be obtained from conventional tests. A well-documented case study is considered to show how the method can be used for routine applications.
CITATION STYLE
Troncone, A., Pugliese, L., & Conte, E. (2022). Rainfall Threshold for Shallow Landslide Triggering Due to Rising Water Table. Water (Switzerland), 14(19). https://doi.org/10.3390/w14192966
Mendeley helps you to discover research relevant for your work.