Container-based lightweight buildings offer a high ecologic and economic potential when they are designed as nearly zero-energy container buildings (NZECBs). Thus, they are relevant to energy transition in achieving an almost climate-neutral building stock. This paper describes and applies design strategies for suitable building concepts and energy systems to be used in NZECBs for different climates. Therefore, different applications in representative climatic zones were selected. Initially, the global climate zones were characterized and analyzed with regard to their potential for self-sufficiency and renewable energies in buildings. The design strategies were further developed and demonstrated for three cases: a single-family house in Sweden, a multi-family house in Germany, and a small school building in rural Ethiopia. For each case, design guidelines were derived and building concepts were developed. On the basis of these input data, various energy concepts were developed in which solar and wind energy, as well as biomass, were integrated as renewable energy sources. All the concepts were simulated and analyzed with the Polysun® software. The various approaches were compared and evaluated, particularly with regard to energy self-sufficiency. Self-sufficiency rates up to 80% were achieved. Finally, the influence of different climate zones on the energy efficiency of the single-family house was studied as well as the influence of the size of battery storage and insulation.
CITATION STYLE
Koke, J., Schippmann, A., Shen, J., Zhang, X., Kaufmann, P., & Krause, S. (2021). Strategies of design concepts and energy systems for nearly zero-energy container buildings (NZECBs) in different climates. Buildings, 11(8). https://doi.org/10.3390/buildings11080364
Mendeley helps you to discover research relevant for your work.