Pre-clinical safety and therapeutic efficacy of a plant-based alkaloid in a human colon cancer xenograft model

6Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A high-throughput drug screen revealed that veratridine (VTD), a natural plant alkaloid, induces expression of the anti-cancer protein UBXN2A in colon cancer cells. UBXN2A suppresses mortalin, a heat shock protein, with dominant roles in cancer development including epithelial–mesenchymal transition (EMT), cancer cell stemness, drug resistance, and apoptosis. VTD-dependent expression of UBXN2A leads to the deactivation of mortalin in colon cancer cells, making VTD a potential targeted therapy in malignant tumors with high levels of mortalin. VTD was used clinically for the treatment of hypertension in decades past. However, the discovery of newer antihypertensive drugs and concerns over potential neuro- and cardiotoxicity ended the use of VTD for this purpose. The current study aims to determine the safety and efficacy of VTD at doses sufficient to induce UBXN2A expression in a mouse model. A set of flow-cytometry experiments confirmed that VTD induces both early and late apoptosis in a dose-dependent manner. In vivo intraperitoneal (IP) administration of VTD at 0.1 mg/kg every other day (QOD) for 4 weeks effectively induced expression of UBXN2A in the small and large intestines of mice. Liquid chromatography–tandem mass spectrometry (LC–MS/MS) assays on tissues collected from VTD-treated animals demonstrated VTD concentrations in the low pg/mg range. To address concerns regarding neuro- and cardiotoxicity, a comprehensive set of behavioral and cardiovascular assessments performed on C57BL/6NHsd mice revealed that VTD generates no detectable neurotoxicity or cardiotoxicity in animals receiving 0.1 mg/kg VTD QOD for 30 days. Finally, mouse xenograft experiments in athymic nude mice showed that VTD can suppress tumor growth. The main causes for the failure of experimental oncologic drug candidates are lack of sufficient safety and efficacy. The results achieved in this study support the potential utility of VTD as a safe and efficacious anti-cancer molecule.

References Powered by Scopus

Cancer Statistics, 2021

18242Citations
N/AReaders
Get full text

Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors

1732Citations
N/AReaders
Get full text

Targeting apoptosis in cancer therapy

1697Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Natural Products/Bioactive Compounds as a Source of Anticancer Drugs

86Citations
N/AReaders
Get full text

UBXN2A suppresses the Rictor-mTORC2 signaling pathway, an established tumorigenic pathway in human colorectal cancer

4Citations
N/AReaders
Get full text

Bioelectric pharmacology of cancer: A systematic review of ion channel drugs affecting the cancer phenotype

3Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Freeling, J. L., Scholl, J. L., Eikanger, M., Knoblich, C., Potts, R. A., Anderson, D. J., … Rezvani, K. (2022). Pre-clinical safety and therapeutic efficacy of a plant-based alkaloid in a human colon cancer xenograft model. Cell Death Discovery, 8(1). https://doi.org/10.1038/s41420-022-00936-3

Readers over time

‘22‘23‘24‘2502468

Readers' Seniority

Tooltip

Lecturer / Post doc 1

50%

Researcher 1

50%

Readers' Discipline

Tooltip

Biochemistry, Genetics and Molecular Bi... 2

67%

Computer Science 1

33%

Article Metrics

Tooltip
Social Media
Shares, Likes & Comments: 105

Save time finding and organizing research with Mendeley

Sign up for free
0