Cancer is a devastating disease and a major human health concern. Various combination treatments have been developed to combat cancer. To obtain superior cancer therapy, the objective of this study was to synthesize purpurin-18 sodium salt (P18Na) and design P18Na- and doxorubicin hydrochloride (DOX)-loaded nano-transferosomes as a combination of photodynamic therapy (PDT) and chemotherapy for cancer. The characteristics of P18Na- and DOX-loaded nano-transferosomes were assessed, and the pharmacological efficacy of P18Na and DOX was determined using the HeLa and A549 cell lines. The nanodrug delivery system characteristics of the product were found to range from 98.38 to 217.50 nm and −23.63 to −41.10 mV, respectively. Further, the release of P18Na and DOX from nano-transferosomes exhibited a sustained pH-responsive behavior and burst in physiological and acidic environments, respectively. Accordingly, the nano-transferosomes effectively delivered P18Na and DOX into cancer cells, with less leakage in the body, and exhibited pH-responsive release in cancer cells. A photo-cytotoxicity study to HeLa and A549 cell lines revealed a size-dependent anti-cancer effect. These results suggest that the combined nano-transferosomes of P18Na and DOX are effective in the combination of PDT and chemotherapy for cancer.
CITATION STYLE
Yeo, S., Kim, M. J., Yoon, I., & Lee, W. K. (2023). pH-Responsive Nano-transferosomes of Purpurin-18 Sodium Salt and Doxorubicin for Enhanced Anticancer Efficiency by Photodynamic and Chemo Combination Therapy. ACS Omega, 8(18), 16479–16490. https://doi.org/10.1021/acsomega.3c01654
Mendeley helps you to discover research relevant for your work.