A reduction in the focal depth of field as a result of the installation of aberration correctors in scanning transmission electron microscopy, allows three-dimensional information to be retrieved by optical depth sectioning. A three-dimensional representation of the specimen is achieved by recording a series of images over a range of focal values. Optical depth sectioning in zone-axis crystals is explored computationally using a Bloch wave analysis to explain the form of the electron intensity in the crystal as a function of depth. We find that the intensity maximum deviates from that of the expected defocus value due to pre-focusing by the atomic column and also due to channelling pendellosung. The possibility of performing bright-field imaging in a double corrected two lens system in a confocal arrangement is also investigated computationally. The method offers some advantages over depth sectioning using conventional transmission electron microscopy. © 2008 IOP Publishing Ltd.
CITATION STYLE
Cosgriff, E. C., D’Alfonso, A. J., Allen, L. J., Findlay, S. D., Kirkland, A. I., & Nellist, P. D. (2008). Three-dimensional imaging using aberration-corrected scanning transmission and confocal electron microscopy. Journal of Physics: Conference Series, 126. https://doi.org/10.1088/1742-6596/126/1/012036
Mendeley helps you to discover research relevant for your work.