There are many car tests regulated by European and international standards and carried out on tracks to assess vehicle performance. The test preparation phase usually consists of placing road cones on the track with a specific configuration defined by the considered standard; this phase is performed by human operators using imprecise and slow methods, mainly due to the large required distances. In this paper, a new geolocation stake-out system based on GNSS RTK technology was realized and tested, supported by a Matlab-based software application to allow the user to quickly and precisely locate the on-track points on which to position the road cones. The realized stake-out system, innovative and very simple to use, produced negligible average errors (i.e., 2.4–2.9 cm) on the distance between the staked-out points according to the reference standards (distance percentage error 0.29–0.47%). Furthermore, the measured average angular error was also found to be very low, in the range 0.04–0.18◦. Finally, ISO 3888-1 and ISO 3888-2 test configurations were reproduced on the proving ground of the Porsche Technical Center by utilizing the realized stake-out system to perform a double lane-change maneuver on car prototypes.
CITATION STYLE
Visconti, P., Iaia, F., De Fazio, R., & Giannoccaro, N. I. (2021). A stake-out prototype system based on GNSS-RTK technology for implementing accurate vehicle reliability and performance tests. Energies, 14(16). https://doi.org/10.3390/en14164885
Mendeley helps you to discover research relevant for your work.