• To investigate the role played by the distribution pattern of glucosinolates (GSLs) in root systems in the release of biocides to the rhizosphere, GSLs have been localized, for the first time, to specific regions and cells in field-grown roots. • GSL concentrations in separated tissues of canola (Brassica napus) were determined by chemical analysis, and cell-specific concentrations by extrapolation from sulphur concentrations obtained by quantitative cryo-analytical scanning electron microscopy (SEM). • In roots with secondary growth, GSL concentrations in the outer secondary tissues were up to 5x those of the inner core. The highest GSL concentrations (from sulphur measurements) were in two cell layers just under the outermost periderm layer, with up to 100x published concentrations for whole roots. Primary tissues had negligible GSL. • Release and renewal of the peripheral GSLs is probably a normal developmental process as secondary thickening continues and surface cells senesce, accounting for published observations that intact roots release GSLs and their biocide hydrolosates to the rhizosphere. Absence of myrosin idioblasts close to the root surface suggests that GSLs released developmentally are hydrolysed by myrosinase in the rhizosphere, ensuring a continuous localized source of biotoxic hydrolysates which can deter soil-borne pests, and influence microbial populations associated with long-lived components of the root system. © CSIRO (2008).
CITATION STYLE
McCully, M. E., Miller, C., Sprague, S. J., Huang, C. X., & Kirkegaard, J. A. (2008). Distribution of glucosinolates and sulphur-rich cells in roots of field-grown canola (Brassica napus). New Phytologist, 180(1), 193–205. https://doi.org/10.1111/j.1469-8137.2008.02520.x
Mendeley helps you to discover research relevant for your work.