Bridge Deterioration Prediction Model Based on Hybrid Markov-System Dynamic

Citations of this article
Mendeley users who have this article in their library.


Instantaneous bridge failure tends to increase in Indonesia. To mitigate this condition, Indonesia's Bridge Management System (I-BMS) has been applied to continuously monitor the condition of bridges. However, I-BMS only implements visual inspection for maintenance priority of the bridge structure component instead of bridge structure system. This paper proposes a new bridge failure prediction model based on hybrid Markov-System Dynamic (MSD). System dynamic is used to represent the correlation among bridge structure components while Markov chain is used to calculate temporal probability of the bridge failure. Around 235 data of bridges in Indonesia were collected from Directorate of Bridge the Ministry of Public Works and Housing for calculating transition probability of the model. To validate the model, a medium span concrete bridge was used as a case study. The result shows that the proposed model can accurately predict the bridge condition. Besides predicting the probability of the bridge failure, this model can also be used as an early warning system for bridge monitoring activity.




Widodo Soetjipto, J., Wahyu Adi, T. J., & Anwar, N. (2017). Bridge Deterioration Prediction Model Based on Hybrid Markov-System Dynamic. In MATEC Web of Conferences (Vol. 138). EDP Sciences.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free