Purpose: To develop a robust parallel imaging reconstruction method using spatial nulling maps (SNMs). Methods: Parallel reconstruction using null operations (PRUNO) is a k-space reconstruction method where a k-space nulling system is derived using null-subspace bases of the calibration matrix. ESPIRiT reconstruction extends the PRUNO subspace concept by exploiting the linear relationship between signal-subspace bases and spatial coil sensitivity characteristics, yielding a hybrid-domain approach. Yet it requires empirical eigenvalue thresholding to mask the coil sensitivity information and is sensitive to signal- and null-subspace division. In this study, we combine the concepts of null-subspace PRUNO and hybrid-domain ESPIRiT to provide a more robust reconstruction method that extracts null-subspace bases of calibration matrix to calculate image-domain SNMs. Multi-channel images are reconstructed by solving an image-domain nulling system formed by SNMs that contain both coil sensitivity and finite image support information, therefore, circumventing the masking-related procedure. The proposed method was evaluated with multi-channel 2D brain and knee data and compared to ESPIRiT. Results: The proposed hybrid-domain method produced quality reconstruction highly comparable to ESPIRiT with optimal manual masking. It involved no masking-related manual procedure and was tolerant of the actual division of null- and signal-subspace. Spatial regularization could be also readily incorporated to reduce noise amplification as in ESPIRiT. Conclusion: We provide an efficient hybrid-domain reconstruction method using multi-channel SNMs that are calculated from coil calibration data. It eliminates the need for coil sensitivity masking and is relatively insensitive to subspace separation, therefore, presenting a robust parallel imaging reconstruction procedure in practice.
CITATION STYLE
Hu, J., Yi, Z., Zhao, Y., Zhang, J., Xiao, L., Man, C., … Wu, E. X. (2023). Parallel imaging reconstruction using spatial nulling maps. Magnetic Resonance in Medicine, 90(2), 502–519. https://doi.org/10.1002/mrm.29658
Mendeley helps you to discover research relevant for your work.