Total Least Squares Phase Retrieval

4Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We address the phase retrieval problem with errors in the sensing vectors. A number of recent methods for phase retrieval are based on least squares (LS) formulations which assume errors in the quadratic measurements. We extend this approach to handle errors in the sensing vectors by adopting the total least squares (TLS) framework that is used in linear inverse problems with operator errors. We show how gradient descent and the specific geometry of the phase retrieval problem can be used to obtain a simple and efficient TLS solution. Additionally, we derive the gradients of the TLS and LS solutions with respect to the sensing vectors and measurements which enables us to calculate the solution errors. By analyzing these error expressions we determine conditions under which each method should outperform the other. We run simulations to demonstrate that our method can lead to more accurate solutions. We further demonstrate the effectiveness of our approach by performing phase retrieval experiments on real optical hardware which naturally contains both sensing vector and measurement errors.

Cite

CITATION STYLE

APA

Gupta, S., & Dokmanic, I. (2022). Total Least Squares Phase Retrieval. IEEE Transactions on Signal Processing, 70, 536–549. https://doi.org/10.1109/TSP.2021.3128750

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free