Drosophila embryonic hemocytes have emerged as a potent system to analyze the roles of key regulators of the actin and microtubule cytoskeletons live and in an in vivo context (Table 1 and references therein). The relative ease with which live imaging can be used to visualize the invasive migrations of these highly motile macrophages and their responses to wound and chemoattrac-tant signals make them a particularly appropriate and genetically tractable cell type to study in relation to pathological conditions such as cancer metastasis and inflammation.1-3 In order to understand how signaling pathways are integrated for a coordinated response, a question with direct relevance to autoimmune dysfunction, we have sought to more fully characterize the inputs these cells receive in vivo over the course of their developmental dispersal. These studies have recently revealed that hemocyte migration is intimately associated with the development of the ventral nerve cord (VNC), a structure used by hemocytes to disperse over the embryo that itself requires this association for its correct morphogenesis. Crucially the VNC must separate from the epidermis to create a channel for hemocyte migration, revealing how constriction of extra cellular space can be used to control cell migration in vivo. © 2011 Landes Bioscience. © 2011 Landes Bioscience.
CITATION STYLE
Evans, I. R., & Wood, W. (2011). Understanding in vivo blood cell migration-Drosophila hemocytes lead the way. Fly, 5(2), 110–114. https://doi.org/10.4161/fly.5.2.14055
Mendeley helps you to discover research relevant for your work.