A power-law time-dependent light curve for active galactic nuclei (AGNs) is expected by the self-regulated black hole growth scenario, in which the feedback of AGNs expels gas and shut down accretion. This is also supported by the observed power-law Eddington ratio distribution of AGNs. At high redshifts, the AGN life timescale is comparable with (or even shorter than) the age of the universe, which sets a constraint on the minimal Eddington ratio for AGNs on the assumption of a power-law AGN light curve. The black hole mass function (BHMF) of AGN relics is calculated by integrating the continuity equation ofmassive black hole number density on the assumption of the growth of massive black holes being dominated by mass accretion with a power-law Eddington ratio distribution for AGNs. The derived BHMF of AGN relics at z = 0 can fit the measured local mass function of the massive black holes in galaxies quite well, provided the radiative efficiency ∼0.1 and a suitable power-law index for the Eddington ratio distribution are adopted. In our calculations of the black hole evolution, the duty cycle of AGN should be less than unity, which requires the quasar life timescale τQ ≥ 5 × 108 years. © 2010. The American Astronomical Society.
CITATION STYLE
Cao, X. (2010). Cosmological evolution of massive black holes: Effects of eddington ratio distribution and quasar lifetime. Astrophysical Journal, 725(1), 388–393. https://doi.org/10.1088/0004-637X/725/1/388
Mendeley helps you to discover research relevant for your work.