According to the uniqueness theorem, the far field radiation pattern of radiators such as antennas can be determined from the measured tangential electric or magnetic field components over an arbitrary Huygens' surface enclosing the radiator. In this paper, a method using the spherical electric field measurement is developed to calculate the far field radiation. Following the Schelkunoff's field equivalence principle, a spherical region surrounding the radiator is assumed and its internal space is filled up with the perfect electric conductor (PEC). The radiated field from the Huygens' equivalent electric current is zero. Referring to the Ohm-Rayleigh method and the scattering wave superposition, the dyadic Green's function (DGF) with the presence of a PEC sphere is expanded by a series of spherical vector wave functions. Based on the DGF and the measured tangential electric field, the radiation behavior of the radiator can be directly predicted without involving the uncertainty from the inverse process. The robustness and accuracy of the proposed method are verified through several canonical antenna benchmarks.
CITATION STYLE
Li, P., & Jiang, L. (2012). The far field transformation for the antenna modeling based on spherical electric field measurements. Progress in Electromagnetics Research, 123, 243–261. https://doi.org/10.2528/PIER11102301
Mendeley helps you to discover research relevant for your work.