There has been much research regarding the perceptions, preferences, behaviour, and responses of people exposed to flooding and other natural hazards. Cross-sectional surveys have been the predominant method applied in such research. While cross-sectional data can provide a snapshot of a respondent’s behaviour and perceptions, it cannot be assumed that the respondent’s perceptions are constant over time. As a result, many important research questions relating to dynamic processes, such as changes in risk perceptions, adaptation behaviour, and resilience cannot be fully addressed by cross-sectional surveys. To overcome these shortcomings, there has been a call for developing longitudinal (or panel) datasets in research on natural hazards, vulnerabilities, and risks. However, experiences with implementing longitudinal surveys in the flood risk domain (FRD), which pose distinct methodological challenges, are largely lacking. The key problems are sample recruitment, attrition rate, and attrition bias. We present a review of the few existing longitudinal surveys in the FRD. In addition, we investigate the potential attrition bias and attrition rates in a panel dataset of flood-affected households in Germany. We find little potential for attrition bias to occur. High attrition rates across longitudinal survey waves are the larger concern. A high attrition rate rapidly depletes the longitudinal sample. To overcome high attrition, longitudinal data should be collected as part of a multisector partnership to allow for sufficient resources to implement sample retention strategies. If flood-specific panels are developed, different sample retention strategies should be applied and evaluated in future research to understand how much-needed longitudinal surveying techniques can be successfully applied to the study of individuals threatened by flooding.
CITATION STYLE
Hudson, P., Thieken, A. H., & Bubeck, P. (2020). The challenges of longitudinal surveys in the flood risk domain. Journal of Risk Research, 23(5), 642–663. https://doi.org/10.1080/13669877.2019.1617339
Mendeley helps you to discover research relevant for your work.