Blinatumomab-induced T cell activation at single cell transcriptome resolution

13Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Bi-specific T-cell engager (BiTE) antibody is a class of bispecific antibodies designed for cancer immunotherapy. Blinatumomab is the first approved BiTE to treat acute B cell lymphoblastic leukemia (B-ALL). It brings killer T and target B cells into close proximity, activating patient’s autologous T cells to kill malignant B cells via mechanisms such as cytolytic immune synapse formation and inflammatory cytokine production. However, the activated T-cell subtypes and the target cell-dependent T cell responses induced by blinatumomab, as well as the mechanisms of resistance to blinatumomab therapy are largely unknown. Results: In this study, we performed single-cell sequencing analysis to identify transcriptional changes in T cells following blinatumomab-induced T cell activation using single cells from both, a human cell line model and a patient-derived model of blinatumomab-mediated cytotoxicity. In total, the transcriptome of 17,920 single T cells from the cell line model and 2271 single T cells from patient samples were analyzed. We found that CD8+ effector memory T cells, CD4+ central memory T cells, naïve T cells, and regulatory T cells were activated after blinatumomab treatment. Here, blinatumomab-induced transcriptional changes reflected the functional immune activity of the blinatumomab-activated T cells, including the upregulation of pathways such as the immune system, glycolysis, IFNA signaling, gap junctions, and IFNG signaling. Co-stimulatory (TNFRSF4 and TNFRSF18) and co-inhibitory (LAG3) receptors were similarly upregulated in blinatumomab-activated T cells, indicating ligand-dependent T cell functions. Particularly, B-ALL cell expression of TNFSF4, which encodes the ligand of T cell co-stimulatory receptor TNFRSF4, was found positively correlated with the response to blinatumomab treatment. Furthermore, recombinant human TNFSF4 protein enhanced the cytotoxic activity of blinatumomab against B-ALL cells. Conclusion: These results reveal a target cell-dependent mechanism of T-cell activation by blinatumomab and suggest that TNFSF4 may be responsible for the resistant mechanism and a potential target for combination therapy with blinatumomab, to treat B-ALL or other B-cell malignancies.

Cite

CITATION STYLE

APA

Huo, Y., Sheng, Z., Lu, D. R., Ellwanger, D. C., Li, C. M., Homann, O., … Ren, R. (2021). Blinatumomab-induced T cell activation at single cell transcriptome resolution. BMC Genomics, 22(1). https://doi.org/10.1186/s12864-021-07435-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free