CO residence time modulates multi-carbon formation rates in a zero-gap Cu based CO2 electrolyzer

1Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Carbon dioxide (CO2) electrolysis on copper (Cu) catalysts has attracted interest due to its direct production of C2+ feedstocks. Using the knowledge that CO2 reduction on copper is primarily a tandem reaction of CO2 to CO and CO to C2+ products, we show that modulating CO concentrations within the liquid catalyst layer allows for a C2+ selectivity of >80% at 200 mA cm−2 under broad conversion conditions. The importance of CO pooling is demonstrated through residence time distribution curves, varying flow fields (serpentine/parallel/interdigitated), and flow rates. While serpentine flow fields require high conversions to limit CO selectivity and maximize C2+ selectivity, the longer CO residence times of parallel flow fields achieve similar selectivity over broad flow rates. Critically, we show that parts of the catalyst area predominantly reduce CO instead of CO2 as supported by CO reduction experiments, transport modelling, and achieving a CO2 utilization efficiency greater than the theoretical limit of 25% for C2+ products.

Cite

CITATION STYLE

APA

Subramanian, S., Kok, J., Gholkar, P., Sajeev Kumar, A., Iglesias van Montfort, H. P., Kortlever, R., … Burdyny, T. (2024). CO residence time modulates multi-carbon formation rates in a zero-gap Cu based CO2 electrolyzer. Energy and Environmental Science. https://doi.org/10.1039/d4ee02004a

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free