Calcium control of waveform in isolated flagellar axonemes of chlamydomonas

235Citations
Citations of this article
58Readers
Mendeley users who have this article in their library.

Abstract

The effect Ca++ of on the waveform of reactivated, isolated axonemes of Chlamydomonas flagella was investigated. Elagella were detached and isolated by the dibucaine procedure and demembranated by treatment with the detergent Nonidet; the resulting axonemes lack the flagellar membrane and basal bodies. In Ca++-buffered reactivation solutions containing 10 -4 M or less free Ca++, the axonemes beat with a highly asymmetrical, predominantly planar waveform that closely resembled that of in situ flagella of forward swimming cells. In solutions containing 10-4 M Ca++, the axonemes beat with a symmetrical waveform that was very similar to that of in situ flagella during backward swimming. In 10-4 M Ca++, the axonemes were predominantly quiescent, a state that appears to be closely associated with changes in axonemal waveform or direction of beat in many organisms. Experiments in which the concentrations of free Ca++ and the CaATP+ complex were independently varied suggested that free Ca++, not CaATP, was responsible for the observed changes. Analysis of the flagellar ATPases associated with the isolated axonemes and the Nonidet-soluble membrane-matrix fraction obtained during preparation of the axonemes showed that the axonemes lacked the 3.0S Ca++-activated ATPase, almost all of which was recovered in the membrane-matrix fraction. These results indicate that free Ca++ binds directly to an axonemal component to alter flagellar waveform, and that neither the 3.0S CaATPase nor the basal bodies are directly involved in this change. © 1980, Rockefeller University Press., All rights reserved.

Cite

CITATION STYLE

APA

Bessen, M., Eay, R. B., & Witman, G. B. (1980). Calcium control of waveform in isolated flagellar axonemes of chlamydomonas. Journal of Cell Biology, 86(2), 446–455. https://doi.org/10.1083/jcb.86.2.446

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free