Conventional ground survey data are very accurate, but expensive. Airborne lidar data can reduce the costs and effort required to conduct large-scale forest surveys. It is critical to improve biomass estimation and evaluate carbon stock when we use lidar data. Bayesian methods integrate prior information about unknown parameters, reduce the parameter estimation uncertainty, and improve model performance. This study focused on predicting the independent tree aboveground biomass (AGB) with a hierarchical Bayesian model using airborne LIDAR data and comparing the hierarchical Bayesian model with classical methods (nonlinear mixed effect model, NLME). Firstly, we chose the best diameter at breast height (DBH) model from several widely used models through a hierarchical Bayesian method. Secondly, we used the DBH predictions together with the tree height (LH) and canopy projection area (CPA) derived by airborne lidar as independent variables to develop the AGB model through a hierarchical Bayesian method with parameter priors from the NLME method. We then compared the hierarchical Bayesian method with the NLME method. The results showed that the two methods performed similarly when pooling the data, while for small sample sizes, the Bayesian method was much better than the classical method. The results of this study imply that the Bayesian method has the potential to improve the estimations of both DBH and AGB using LIDAR data, which reduces costs compared with conventional measurements.
CITATION STYLE
Wang, M., Liu, Q., Fu, L., Wang, G., & Zhang, X. (2019). Airborne LIDAR-derived aboveground biomass estimates using a hierarchical Bayesian approach. Remote Sensing, 11(9). https://doi.org/10.3390/rs11091050
Mendeley helps you to discover research relevant for your work.