ππ→ KK¯ scattering up to 1.47 GeV with hyperbolic dispersion relations

50Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this work we provide a dispersive analysis of ππ→ KK¯ scattering. For this purpose we present a set of partial-wave hyperbolic dispersion relations using a family of hyperbolas that maximizes the applicability range of the hyperbolic dispersive representation, which we have extended up to 1.47 GeV. We then use these equations first to test simple fits to different and often conflicting data sets, also showing that some of these data and some popular parameterizations of these waves fail to satisfy the dispersive analysis. Our main result is obtained after imposing these new relations as constraints on the data fits. We thus provide simple and precise parameterizations for the S, P and D waves that describe the experimental data from KK¯ threshold up to 2 GeV, while being consistent with crossing symmetric partial-wave dispersion relations up to their maximum applicability range of 1.47 GeV. For the S-wave we have found that two solutions describing two conflicting data sets are possible. The dispersion relations also provide a representation for S, P and D waves in the pseudo-physical region.

Cite

CITATION STYLE

APA

Pelaez, J. R., & Rodas, A. (2018). ππ→ KK¯ scattering up to 1.47 GeV with hyperbolic dispersion relations. European Physical Journal C, 78(11). https://doi.org/10.1140/epjc/s10052-018-6296-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free